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Abstract - We consider in this paper local sensor

quantizer design for large-scale bandwidth and/or

energy constrained wireless sensor networks (WSNs)

operating in fading channels. In particular, under

the Neyman-Pearson framework, we address the de-

sign of binary local sensor quantizers for a binary

hypothesis problem in the asymptotic regime where

the number of sensors is large. Motivated by the sen-

sor censoring idea for reduced communication rate,

each sensor either transmits ‘1’ to a fusion center or

remains silent. By adopting energy detector as the

fusion rule, we develop a procedure to obtain local

sensor threshold that maximizes the Kullback-Leibler

distance of the distributions of the fusion statistic

under the two hypotheses. The proposed quantizer

design is well suited for the emerging large scale

resource-constrained WSNs applications. Numerical

results based on Gaussian and exponential observa-

tions are presented to demonstrate the design proce-

dure.

Keywords: Wireless sensor networks, distributed detec-

tion, asymptotic regime, censoring sensors.

1 Introduction

The design of local quantizer for distributed detection
under communication rate constraint has been studied
over the past decades (see, e.g., [1–7]). For example,
the sensor censoring idea, was proposed by Rago et

al in 1996 [1] in the context of decentralized detec-
tion for reduced communication rate. With censored
sensors, only the sensor with informative observation,
measured by its local likelihood ratio (LR) value, sends
its LR value to the fusion center. Under Neyman-
Pearson framework, an extreme censoring scheme with
an on/off local sensor signaling structure has been con-
sidered in [3] in the context of studying locally opti-
mum distributed detection, where if the local LR ex-
ceeds certain threshold, then a single bit of informa-
tion is sent; otherwise, the sensor keeps silent. More
recently, under the Bayesian framework, the design of
optimal local thresholds for distributed detection un-
der such on/off signaling structure was studied in [7].

In this paper, we consider the Neyman-Pearson
framework and address the optimal binary local sen-

sor quantizer design for a binary hypothesis testing
problem. In particular, we study the asymptotic case
where the number of sensors is large. Using an energy
detector as the fusion statistic at the fusion center,
we propose a procedure to determine the optimal lo-
cal threshold through maximizing the Kullback-Leibler
(KL) distance of the distributions of the fusion statis-
tic under the two hypotheses. Specifically, we develop
efficient algorithms to facilitate the determination of
the optimal thresholds for various scenarios, catering
to different constraints.

The organization of the paper is as follows. In the
next section, we introduce the system model and for-
mulate the problem. In Section 3, we pose the design
problem as maximizing the KL distance while subject
to rate constraints at local sensors and present algo-
rithms to obtain the optimal thresholds numerically.
Design examples under Gaussian and exponential dis-
tributions are provided in Section 4 to illustrate the
design procedure. We finally conclude in Section 5.

2 Problem formulation

Fig. 1 depicts a canonical parallel fusion structure
in the presence of non-ideal channels. All the chan-
nels are assumed independent Rayleigh fading channels
and corrupted by independent identically distributed
(i.i.d.) complex white Gaussian noises. Specifically,
we use hkejφk and nk to denote the channel coeffi-
cient and channel noise of the kth channel. The quan-
tity hk follows a Rayleigh distribution with pdf of
P (hk) = 2hke−h2

k , φk ∈ U [0, 2π] is the phase due to the
transmission, and nk is a zero mean complex Gaussian
noise whose real and imaginary parts are independent
of each other and have equal variance σ2.

Assume the local observations Xk, k = 1, 2, · · · ,K,
are independent across sensors conditioned on the hy-
potheses, i.e., for i = 0, 1,

P (X1, . . . , XK |Hi) =

K
∏

k=1

P (Xk|Hi),

where K is the total number of sensors and H0 and H1

represent the two hypotheses. We further assume that
each local sensor makes a binary decision uk based on
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Figure 1: Parallel fusion model in the presence of
Rayleigh fading and noisy channels between the local
sensors and the fusion center

its observation Xk:

uk = γk(Xk) ∈ {1, 0}

where γk(.) stands for the local decision rule at the kth

sensor. If uk = 1, sensor k will send uk to the fusion
center through a fading channel; Otherwise, the sensor
remains silent, i.e., no transmission is needed.

Denote ρ as the communication constraint on each
sensor. In this work, we assume all local sensors
have the same communication constraint. Under the
Neyman-Person framework, following the similar spirit
as in [1], we define the communication rate Rk for the
kth sensor as the probability of false alarm rate at the
sensor. Let pdk and pfk denote the detection probabil-
ity and the false alarm rate at the kth local sensor, the
communication constraint requires the following con-
dition to be satisfied:

Rk = pfk ≤ ρ

for k = 1, . . . ,K. We note that this rate constraint
is different from the constraint on the false alarm rate
under the Neyman-Pearson test: the size of the test for
a distributed detection system is defined for the fusion
center whereas here we constrain the size of the local
sensors.

At the fusion center, based on the received channel
outputs y1, · · · , yK , a final decision u0 on which hy-
pothesis is true is made by implementing an optimal
fusion rule γ0. That is,

u0 = γ0(y1, . . . , yk)

The goal in this paper is to obtain the optimal lo-
cal decision rules (i.e., find the optimal local sensor
quantization thresholds) that achieves optimal detec-
tion performance under the communication constraint.
In particular, under the Neyman-Pearson framework,
we consider the asymptotic case where the number of
sensors is large. The design rationale and our main
results are provided in the next section.

3 Asymptotic Regime

Throughout this paper, we consider K, the number of
local sensors, to be large.

We assume all sensors adopt likelihood ratio (LR)
test as the local decision rule with the same threshold,
denoted by τ . This is motivated by the classical result
[8] where it was shown that identical decision rule is
asymptotically optimum for binary hypothesis testing
with identically distributed observations. Thus, local
sensors have identical local performance indexes, which
we denote by pf = pfk and pd = pdk. Moreover, the
rate constraints for all sensors are the same, i.e., R =
pf ≤ ρ.

Given the system model depicted in Fig. 1, the re-
ceived signals at the fusion sensor can be expressed as,
for k = 1, 2, · · · ,K,

yk =

{

nk if uk = 0
hkejφk + nk if uk = 1

(1)

In the current setup, we assume that only chan-
nel fading statistics are available at the design stage.
Therefore, for incoherent detection, we adopt an en-
ergy detector as the fusion statistic, i.e.,

Λ =
1

K

K
∑

k=1

|yk|
2 =

1

K

K
∑

k=1

zk

where zk , |yk|
2 and is independent of one another for

k = 1, · · · ,K, given the independence assumptions on
the channels and on channel noises. It is shown in [5,6]
that the energy detector is a good approximate of the
optimal fusion rule at low signal-to-noise ratio regime.
The conditional pdfs of zk given the local decision uk

are given by:

P (zk|uk = 0) =
1

2σ2
e−

zk

2σ2

P (zk|uk = 1) =
1

1 + 2σ2
e
−

zk

1+2σ2

That is, given the local decisions uk, zk’s are i.i.d. and
are exponentially distributed with respective mean val-
ues equal to 2σ2 and 1 + 2σ2.

Consider the number of sensors to be large, the Cen-
tral Limit Theorem allows us to approximate the dis-
tributions of Λ as Gaussian distributions under both
hypotheses. The following lemma describes the distri-
butions of Λ specifically.

Lemma 1 In the asymptotic regime, the conditional

pdf of Λ given hypothesis Hj is N(µj , σ
2
j ) for j = 0, 1.



Specifically,

µ1 = E[Λ|H1] = pd + 2σ2

µ0 = E[Λ|H0] = pf + 2σ2

σ2
1 = V ar[Λ|H1] = f(pd)

σ2
0 = V ar[Λ|H0] = f(pf )

where

f(x) ,
1

K
[(2σ2)2 + 2(1 + 2σ2)x − x2] (2)

Since pd and pf are functions of the local LR thresh-
old τ , both means and variances of Λ under both hy-
potheses are also functions of τ .

The KL distance (relative entropy), defined as
D(P0||P1) = Ep0

(log P0

P1
), between the two distribu-

tions under test is directly related to the detection
performance in an asymptotic regime given Pj =
P (Λ|Hj), j = 0, 1. Stein’s lemma [9] states that under
the Neyman-Pearson framework the best achievable er-
ror exponent in the probability of error is given by the
KL distance.

In our setup, for Gaussian distributions P0 and P1,
we can further simplify D(P0||P1) as

D(P0||P1) = log
σ1

σ0
+

(σ2
0 − σ2

1) + (µ0 − µ1)

2σ2
1

(3)

Throughout this paper, we use the natural loga-
rithm in the KL distance expression, i.e., the measure
unit of D(P0||P1) is nats. It is shown in [9] that the
KL distance is nonnegative. Clearly, the KL distance
D(P0||P1) is a function of local LR threshold τ . As
such, the optimum local threshold τ can be determined
by

τ∗ = arg max
τ

D(P0||P1) = arg max
τ

D(τ) (4)

To accommodate the communication rate constraints,
we now pose the design problem as the following con-
strained maximization problem:

max D(τ)
subject to R = pf ≤ ρ

(5)

This is a nonlinear optimization problem with in-
equality constraint [10]. In general, since D(τ) is not
a convex function, we can not adopt the Kuhn-Tucker
Theorem [10] directly to solve the above optimization
problem.

The closed-form solution to the local sensor thresh-
old may not be obtained directly. In the current work,
however, since the rate function R(τ) = pf (τ) is a de-
creasing function as τ , we can devise an efficient algo-
rithm to obtain the optimal τ numerically, as described
below:

Algorithm

1. Obtain τ∗ based on Eq. (4) where τ∗ corresponds
to the maximum point of the KL distance without
any rate constraint.

2. Check if τ∗ satisfies R(τ∗) ≤ ρ;

(a) If yes, stop, and the optimum solution τopt =
τ∗;

(b) If not, go to 3).

3. Calculate τ (ρ) by solving R(τ) − ρ = 0. Since
R(τ) monotonically decreases as τ increases, the
optimum point must be in the region of [τ (ρ),∞).
Calculate the KL distance of the following three
types of points within this region:

(a) the start point: τ (s) = τ (ρ);

(b) the end point: τ (e) = ∞;

(c) the points τ (0,i), i = 1, 2, · · · , N0, which sat-

isfy ∂D(τ)
∂τ

= 0. The quantity N0 denotes the
total number of such points.

4. Compare the KL distances associated with the
points in 3). The optimum solution τopt is the
threshold which corresponds to the largest KL dis-
tance among those obtained in 3).

In many cases, for example, for local observations
with Gaussian and exponential distributions, the LR
threshold τ can be translated directly to the local ob-
servation threshold, denoted as η. The rate function
R(η) is thus either a monotonically decreasing or in-
creasing function of η. In the former case, the above
algorithm is directly applicable with τ replaced by η.
To deal with the latter case, i.e., the increasing rate
function R(η), we only need slightly modify the algo-
rithm in step 3). Specifically,

• set the start point η(s) = ηs, where ηs is the
minimum value of η associated with the detection
problem under consideration, e.g., in the Gaussian
observations case, ηs = −∞.

• set the end point η(e) = η(ρ).

In the next section, we will present two design ex-
amples to find the optimal local thresholds using the
proposed algorithms.

4 Design Examples

In this section, we demonstrate the design procedure
described in the previous section through examples of
Gaussian and exponential distributed local observa-
tions.

4.1 Gaussian Observations Case

In the case of the detection of a known signal in in-
dependent Gaussian noises, the observations at local
sensors follow Gaussian distributions. Specifically, we
assume that

H0 : Xk = vk

H1 : Xk = s + vk (6)

where s is the known signal, vk, k = 1, 2, · · · ,K,
are i.i.d. white Gaussian noises with zero mean and



variance σ2
v . Without loss of generality, we assume

s = 1 in the simulation.
Notice that for the Gaussian problem, the LR

threshold τ can be directly translated to the thresh-
olds for the local observations η. Then the false alarm
rate pf and the detection probability pd at local sensors
can be expressed as:

pf = Q

(

η

σv

)

(7)

pd = Q

(

η − s

σv

)

(8)

Thus, we further obtain

µ1 = Q

(

η − s

σv

)

+ 2σ2

µ0 = Q

(

η

σv

)

+ 2σ2

σ2
1 = f

(

Q(
η − s

σv

)

)

σ2
0 = f

(

Q(
η

σv

)

)

where f(x) is defined in Eq. (2) in the previous section.
Given the form of pf in Eq. (8), we can show that

the rate function R = pf is a monotonically decreasing
function of η. Hence, the optimal threshold η can be
obtained using the procedure described in the proposed
algorithm. The simulation results under different rate
constraint ρ are listed in Table 1 at the channel signal-
to-noise ratio (SNR) = 0dB.

As seen from Table 1, the results obtained us-
ing the proposed algorithm and through exhaustive
search match very well for different communication
constraint ρ. Another interesting observation is: as
ρ increases, the obtained threshold will eventually re-
main unchanged. This is not surprising: in such case,
the optimal solution coincides with that of the uncon-
strained optimization.

To better understand this behavior, we provide a
plot of the KL distance versus the rate constraint ρ in
Fig. 2. Three different curves represent different chan-
nel SNRs. The tradeoff between the communication
rate, the channel SNR and the system performance can
be clearly seen from the figure. For small ρ, increasing
ρ improves the KL distance yet as ρ becomes large,
D(P0||P1) eventually levels off in all cases. Moreover,
the higher the channel SNR, the better the local quan-
tization can do to improve the system performance.

4.2 Exponential Observations Case

Next we consider an example of exponential observa-
tions at local sensors. The conditional distributions
under exponential observations assumption can be ex-
pressed as

f(Xk|H0) = β0e
−β0Xk (9)

f(Xk|H1) = β1e
−β1Xk (10)

where Xk ≥ 0, and without loss of generality, we as-
sume that 0 < β0 < β1.

ρ η (algorithm) η (exhaustive search)
.1 1.2816 1.2816
.2 0.8596 0.8596
.4 0.8596 0.8596
.6 0.8596 0.8596
1 0.8596 0.8596

Table 1: Local observation thresholds obtained for
Gaussian observations.

ρ η (algorithm) η (exhaustive search)
.1 0.0702 0.0702
.2 0.1488 0.1488
.4 0.3406 0.3406
.6 0.3582 0.3584
1 0.3582 0.3584

Table 2: Local observation thresholds obtained for ex-
ponential observations.

Similarly, the LR threshold τ can be translated di-
rectly to the local observation threshold in the expo-
nential observations case. The local decision rule is in
the form of the following:

Xk
>
<

uk = 0

uk = 1

η (11)

Consequently, the false alarm rate pf and the detection
probability pd at local sensors can be expresses as

pf = 1 − e−β0η (12)

pd = 1 − e−β1η (13)

It can be shown that the rate R = pf is a monoton-
ically increasing function of η. Hence, we can adopt
the modified algorithm to obtain the optimal thresh-
old η numerically. The simulation results for different
rate constraint ρ are listed in Table 2 at channel SNR
= 0dB.

The same observations hold as what were observed
in the Gaussian observations example: as ρ increases,
the obtained threshold will eventually remain un-
changed. The results obtained using the proposed al-
gorithm and through exhaustive search in Table 2 for
the exponential observation case match very well for
different ρ’s.

Under exponential observations, similarly, as shown
from the plot of the KL distance versus the rate con-
straint ρ in Fig. 3, for small ρ, increasing ρ improves
D(P0||P1) yet as ρ becomes large, there’s a “satura-
tion” effect for D(P0||P1).

5 Conclusion

In this paper, under Neyman-Person framework we
have developed a procedure to obtain the optimal local
sensor quantization threshold for a binary hypothesis
testing problem under communication constraint. In
particular we consider the asymptotic case where the
number of sensors is large. By adopting energy detec-
tor as the fusion statistic and applying central limit



theorem, we pose the design problem as maximizing
the Kullback-Leibler distance of the distributions of
the fusion statistic under both hypothesis while sub-
ject to certain rate constraint. Efficient algorithms are
developed to numerically obtain the optimal thresh-
old at local sensors for different scenarios of the rate
function.
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Figure 2: Kullback-Leibler distance as a function of
ρ at different channel SNRs under Gaussian observa-
tions.
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